1) Hahn, A. et al. Ernährung: Physiologische Grundlagen, Prävention, Therapie, 3. neu bearbeitete und erweiterte Auflage. Stuttgart: Wissenschaftliche Verlagsgesellschaft Stuttgart, 2016.
2) Burgerstein, L. et al. Burgersteins Handbuch der Nährstoffe, 1. Auflage. Stuttgart: Haug Verlag, 2002.
3) Centers of Disease Control and Prevention, Georgia. 2003. Neurologic impairment in children associated with maternal dietary deficiency of cobalamin. MMWR Morb Mortal Wkly Rep. 52:61-4.
4) Dhonushke-Rutten, R. A. et al. 2005. Low bone mineral density and bone mineral content are associated with low cobalamin status in adolescents. Eur J Nutr. 44(6):341-7.
5) Porter, K. et al. 2016. Causes, Consequences and Public Health Implications of Low B-Vitamin Status in Ageing. Nutrients. 8(11): 725. doi: 10.3390/nu8110725.
6) Gröber, U. Orthomolekulare Medizin: Ein Leitfaden für Apotheker und Ärzte, 3. unveränderte Auflage. Stuttgart: WVG Wissenschaftliche Verlagsgesellschaft Stuttgart, 2008.
7) Osimani, A. et al. 2005. Neuropsychology of B12 deficiency in elderly dementia patients an control subjects. J Geriatr Psychiatry Neurol. 18(1):33-8.
8) Okada, K. et al. 2010. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol. 222(2):191-203. doi: 10.1016/j.expneurol.2009.12.017.
9) Stanger, O. et al. 2003. DACH-LIGA homocystein consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. Clin Chem Lab Med. 41(11):1392-403.
10) Kado, D. M. et al. 2005. Homocystein versus vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: Mac Arthur Studies of Successful Aging. Am J Med. 118(2):161-7.
11) Reynolds, E. 2003. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 5(11):949-60.
12) Universität Wien: Koronare Herzerkrankungen. In: Österreichischer Ernährungsbericht 2003. Wien: Bundesministerium für Gesundheit und Frauen, 2003.
13) Roman-Garcia, P. et al. 2014. Vitamin B12–dependent taurine synthesis regulates growth and bone mass. J Clin Invest. 124(7):2988–3002. doi: 10.1172/JCI72606.
14) Olteanu, H. Munson, T. Banerjee, R. 2002. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 41(45):13378-85. .
15) Wilson, A. et al. 1999. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab. (4):317-23.
16) Seibold, P. et al. Polymorphisms in oxidative stress-related genes and postmenopausal breast cancer risk. Int J Cancer. 129(6):1467-76.
17) Jiang-Hua, Q. et al. 2014. Association of methylenetetrahydrofolate reductase and methionine synthase polymorphisms with breast cancer risk and interaction with folate, vitamin B6, and vitamin B 12 intakes. Tumour Biol. 35(12):11895-901.
References Interactions
Stargrove, M. B. et al. Herb, Nutrient and Drug Interactions: Clinical Implications and Therapeutic Strategies, 1. Auflage. St. Louis, Missouri: Elsevier Health Sciences, 2008.
Gröber, U. Mikronährstoffe: Metabolic Tuning –Prävention –Therapie, 3. Auflage. Stuttgart: WVG Wissenschaftliche Verlagsgesellschaft Stuttgart, 2011.
Gröber, U. Arzneimittel und Mikronährstoffe: Medikationsorientierte Supplementierung, 3. aktualisierte und erweiterte Auflage. Stuttgart: WVG Wissenschaftliche Verlagsgesellschaft Stuttgart, 2014.
|